When Papers Choose their Reviewers: Adversarial Machine Learning in Peer Review

Konrad Rieck
VISP Distinguished Lecture
No more Reviewer #2: Subverting Automatic Paper-Reviewer Assignment using Adversarial Learning

USENIX Security Symposium, August 2023

Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz, and Konrad Rieck
Automatic Paper-Reviewer Assignment
Papers and Reviews

- **Peer review**
 - Independent evaluation of scientific papers by reviewers
 - Instrument for quality control and selection of publications
 - Process with many weaknesses — little alternatives yet

- **Initial Step: Paper-Reviewer Assignment**
 - Assignment of qualified reviewers to each paper
 - Good match of topic (paper) and expertise (reviewer)
Assignment Process

- Traditional assignment process
 - Classic assignment by journal editor or program committee chair
 - “Bidding” of reviewers on papers and semi-automatic assignment
Assignment Process

• **Traditional assignment process**
 - Classic assignment by journal editor or program committee chair
 - “Bidding” of reviewers on papers and semi-automatic assignment

• **Manual bidding increasingly impossible for hot topics 🔥**
Assignment Process

- **Traditional assignment process**
 - Classic assignment by journal editor or program committee chair
 - “Bidding” of reviewers on papers and semi-automatic assignment

- **Manual bidding increasingly impossible for hot topics**🔥

10,000 submissions. Reading each paper’s title (~3s) takes 8 hours!
Assignment Process

- **Traditional assignment process**
 - Classic assignment by journal editor or program committee chair
 - “Bidding” of reviewers on papers and semi-automatic assignment

- **Manual bidding increasingly impossible for hot topics 🔥**
Automatic Assignment

• Idea: **Assignment of reviewers to papers using machine learning**
 • First solutions developed already in 2010 for NeurIPS
 • Two systems available: TPMS and AutoBid (open-source variant of TPMS)
 • TPMS de-facto standard employed by several conferences

• **Main principle: Topic modeling**
 • Extraction of topics from corpus of representative publications
 • Matching of papers with reviewers in the topic space
From Papers to Vectors

- **Step 1: Mapping of papers to a feature space**
 - Extraction and preprocessing of text from paper document (e.g. PDF)
 - Paper z represented as bag-of-words vector $x \in \mathbb{N}^{\|V\|}$ over vocabulary V

In this paper we propose a method for static analysis of attack code...
From Papers to Vectors

- **Step 1: Mapping of papers to a feature space**
 - Extraction and preprocessing of text from paper document (e.g. PDF)
 - Paper z represented as bag-of-words vector $x \in \mathbb{N}^{|V|}$ over vocabulary V
From Vectors to Topics

- **Step 2: Automatic discovery of topics from feature vectors**
 - Topic = set of co-occuring words (e.g., “crypto” and “key”)
 - Different algorithms for topic modelling available, e.g. LDA
 - Each feature vector represented as mixture of topics
From Vectors to Topics

• **Step 2: Automatic discovery of topics from feature vectors**
 • Topic = set of co-occurring words (e.g., “crypto” and “key”)
 • Different algorithms for topic modelling available, e.g. LDA
 • Each feature vector represented as mixture of topics
From Vectors to Topics

- **Step 2: Automatic discovery of topics from feature vectors**
 - Topic = set of co-occurring words (e.g., “crypto” and “key”)
 - Different algorithms for topic modelling available, e.g. LDA
 - Each feature vector represented as mixture of topics
From Topics to Expertise

- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space
From Topics to Expertise

- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space
From Topics to Expertise

Step 3: Matching of reviewers and papers along topics

- Paper submission mapped to feature vector x
- Combined publications of each reviewer also mapped to vectors
- Ranking of reviewers based on similarity in topic space
From Topics to Expertise

- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space

![Diagram showing topic space, expertise of reviewers, and topics of paper submission with percentages and keywords like crypto, key, attack, model, analysis, code.]
From Topics to Expertise

- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space
Real Examples

• Reviewer: Martina Lindorfer
 • Topic 33%: app, android, applic, permit, user ...
 • Topic 26%: malwar, detect, malici, sampl, featur ...
 • Topic 08%: analysi, input, fuzz, execut, test ...

• Reviewer: Matteo Maffei
 • Topic 26%: random, signatur, secur, key, scheme ...
 • Topic 21%: transact, bitcoin, contract, payment, blockchain ...
 • Topic 14%: protocol, model, secur, messag, session ...
Construction of Adversarial Papers
Attack Overview

- **Idea: Adversarial Paper**
 - Smart changes to paper misleading reviewer assignment
 - Manipulation of ranking: Removal and addition of reviewers
 - Minimal and unobtrusive changes to paper only

Topic space
Attack Overview

• Idea: Adversarial Paper
 • Smart changes to paper misleading reviewer assignment
 • Manipulation of ranking: Removal and addition of reviewers
 • Minimal and unobtrusive changes to paper only
Attack Overview

• Idea: **Adversarial Paper**
 • Smart changes to paper misleading reviewer assignment
 • Manipulation of ranking: Removal and addition of reviewers
 • Minimal and unobtrusive changes to paper only
Attack Overview

- **Idea: Adversarial Paper**
 - Smart changes to paper misleading reviewer assignment
 - Manipulation of ranking: Removal and addition of reviewers
 - Minimal and unobtrusive changes to paper only
How hard could it be?

• Despite hype on adversarial learning: No suitable work for us 😞

• Two tricky challenges
 • No inverse map from topic space back to problem space
 • Unobtrusive changes lead to side effects in the feature space
How hard could it be?

- Despite hype on adversarial learning: No suitable work for us 😞

- Two tricky challenges
 - No inverse map from topic space back to problem space
 - Unobtrusive changes lead to side effects in the feature space

![Diagram](attachment:image.png)
How hard could it be?

- Despite hype on adversarial learning: No suitable work for us 😞

- Two tricky challenges
 - No inverse map from topic space back to problem space
 - Unobtrusive changes lead to side effects in the feature space
Our Attack Strategy

- Alternating between topic space and problem space
 - Beam search in topic space suggests small steps
 - Realization of steps using transformations in problem space
 - Iterative process moving towards selected positions
Navigation: Beam Search

- Each reviewer represented by word probabilities of topics
 - Restriction to words with minimal side effect (unique use)

- Search using k directions in parallel drawn from word probabilites
 - Direction: Increments and decrements of words
 - L_1 Constraint on total modified words in paper
 - L_{∞} Constraint on total modification per words
Driving: Transformations

- Selection from set of available transformations
 - Support for incrementing and decrementing words
 - Different level of stealthiness and side effects

- Two groups of transformations
 - Format and encoding: Dirty tricks on text representation in paper
 - Text transformation: Semantics-preserving changes
Driving: Format and Encoding

- Large attack surface due to complex PDF format
 - Support of accessibility features, scripting and several encodings
Driving: Format and Encoding

- Large attack surface due to complex PDF format
- Support of accessibility features, scripting and several encodings
- Example: Substitution with accessibility feature

Paper z \[\ldots \text{static program} \ldots \] \[\text{crypto analysis} \] \[\text{Alternate text} \] Text $\rho(z)$ \[\text{crypto} \] \[\text{analysis} \]
Driving: Format and Encoding

- Large attack surface due to complex PDF format
 - Support of accessibility features, scripting and several encodings

- Example: Substitution with accessibility feature

 Paper z \[\ldots \text{static} \quad \text{program} \ldots \]
 Text \(\rho(z) \)
 crypt\(\footnotesize{\text{a}} \) \(\footnotesize{\text{t}} \) \(\footnotesize{\text{i}} \) \(\footnotesize{\text{c}} \) \(\footnotesize{\text{i}} \) \(\footnotesize{\text{a}} \) \(\footnotesize{\text{l}} \) \(\footnotesize{\text{y}} \) \(\footnotesize{\text{p}} \) \(\footnotesize{\text{h}} \) analysis

- Example: Deletion of words with encoding

 Paper z \[\ldots \text{static} \quad \text{program} \ldots \]
 Text \(\rho(z) \)
 st\(\footnotesize{\text{t}} \) \(\footnotesize{\text{i}} \) \(\footnotesize{\text{c}} \) \(\footnotesize{\text{i}} \) \(\footnotesize{\text{a}} \) \(\footnotesize{\text{l}} \) \(\footnotesize{\text{y}} \) \(\footnotesize{\text{p}} \) \(\footnotesize{\text{h}} \) program

Alternate text

Homophones
Driving: Format and Encoding

- Large attack surface due to complex PDF format
 - Support of accessibility features, scripting and several encodings

- Example: Substitution with accessibility feature

 ![Diagram showing substitution with accessibility feature]

- Example: Deletion of words with encoding

 ![Diagram showing deletion of words with encoding]
Driving: Text Transformations

- Neural word embedding trained on 11,000 security papers
- Removal of words using synonyms from embedding

Original text: intrusion detection x86 binary

Changed text: attack identification i386 software

Synonyms and similar words
Driving: Text Transformations

- Neural word embedding trained on 11,000 security papers
 - Removal of words using synonyms from embedding

Original text

- intrusion
- detection
- x86
- binary

Changed text

- attack
- identification
- i386
- software

Synonyms and similar words

- Bibliography database of 11,000 security papers
 - Insertion of words using additional bibliographic references

Requested words

- crypto
- model

New reference

Often helpful side effects!
Driving: Text Transformation

- Large language model for fabricating text with given words
 - Transformer model OPT-350m finetuned to text from security papers
 - With our resources reasonable text, but no comparison to larger models

The recent rise in popularity for social networking services (SNS) exemplifies how users are using them today. Users can share content with others by posting it on their own broadened thinking.

The lip speakers inaudible voice assistants are demoted away from human listeners by adding an additional layer between them (lobes). This approach can potentially mitigate some attacks ...
Navigation & Driving: Putting it together

- Each transformation assigned a stealth level and a budget
 - Stealth transformations preferred until their budgets exceeded
 - Encoding and format tricks only when no text budget left
 - Example: 10 synonyms, 10 references, 10 generations, …

- Iterative process alternating between search and transformations
 - Control using total attack budget and number of switches
Empirical Evaluation
Simulated Conference

- Simulation of IEEE Symposium on Security and Privacy 2020
 - PC of 165 reviewers, each represented by 20 of their papers
 - 32 real paper submissions with source code from arXiv
 - Top-5 ranked reviewers assigned to each submission (no load balancing)

- Two attack scenarios
 - White-box attack: Adversary has direct access to topic model
 - Black-box attack: Adversary trains own surrogate models
White-Box Scenario

- Experiment: **Selection and rejection of reviewers within Top-10**
 - Evaluation of attack budget and number of switches

![Diagram showing attack success rate against attack budget and number of switches for different types of transformations: Text, Text + Encoding, Text + Format.](image-url)
White-Box Scenario

- Experiment: Selection and rejection of reviewers within Top-10
 - Evaluation of attack budget and number of switches

\[\text{Attack success rate} \]

<table>
<thead>
<tr>
<th>Attack budget</th>
<th># switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

99% success rate if all transformations are used
White-Box Scenario

- Experiment: Selection and rejection of reviewers within Top-10
- Evaluation of attack budget and number of switches

![Graph showing attack success rate with different attack budgets and number of switches.]

- For larger attack budgets, the success rate increases significantly. For example, with a budget of 4, the success rate can reach 99% if all transformations (Text, Encoding, Format) are used.
- With smaller budgets, the success rate is lower, ranging from 20% to 60%, and it is more successful when only text changes are made.

99% success rate if all transformations are used
20-60% attacks successful with text changes only
Black-Box Scenario

- Experiment: **Attacks with surrogate models**
 - Training of ensemble of surrogate models on 70% of original data
 - Transfer of best attack to topic model of conference system

![Success rate vs. Ensemble size](image-url)
Black-Box Scenario

- **Experiment**: **Attacks with surrogate models**
 - Training of ensemble of surrogate models on 70% of original data
 - Transfer of best attack to topic model of conference system

![Graph showing success rate vs ensemble size](image)

- Good performance when ensemble size increased
- 70%-90% success rate of attacks
Black-Box Scenario

- **Experiment:** Transferability for different conference systems
 - Attacks from 8 surrogate models transferred to conference systems
Black-Box Scenario

- Experiment: *Transferability for different conference systems*
- Attacks from 8 surrogate models transferred to conference systems

![Graph showing the success of adversarial papers across different conference systems. The graph indicates that 34% of papers are effective against all eight systems.](image-url)
Plausibility

- Evaluation of plausibility with small user study
 - 21 security researchers perform mini-reviews on papers
 - Participants asked about quality of paper and suspiciousness

![Bar charts showing ratings](chart.png)

No significant difference observed
Conclusions
Aftermath

- **Possible defenses**
 - Sanitization and anomaly detection in PDF files
 - Prevention of format and encoding tricks with OCR recognition
 - Defenses against text transformations currently unknown

- **Notification of TPMS and AutoBid developers**
 - Positive email exchange — No time for defenses currently 🐻

- **Is this a threat? Personal take: Yes!**
Conclusions

• New attack against automatic reviewer-paper assignment
 • Hybrid attack strategy in feature space and problem space
 • Minimal and unobtrusive transformations of papers

• Broader perspective
 • Decisions based on learning models inherently insecure
 • More to explore off the beaten path of adversarial learning

• More at https://github.com/rub-syssec/adversarial-papers
Thanks! Questions?